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J. Phy. A: Math. Gen. 26 (1993) 1077-1089. Printed in the UK 

The statistical mechanics of the Ising perceptron 

J F Fontanant and R M e a  
t Instiluto de  Fsica e Quimica de  S&o Carlos, Universidade de SBo Paulo, 
a h a  Posul369, 13560 Sio Carlos SP, Brazil 
t Depanmenl of Electrical Engineering, Ttchnion, Haifa 32000, Israel 

Abstract We invatigate the problem of loading a single-layered perceptron of king (il) 
weights, focusing on the cases of linear and binary oulput neumns. P d o u s  studies of 
this problem have been made using lhe canonical ensemble, which in many cases require 
the breaking of replica symmetry. We consider here an alternative approach, based on 
the microcanonical ensemble, and show that many results that were obtained previously 
using replica symmetry breaking within the canonical ensemble can be easily obtained 
using lhe replica-symmetric assumption within the microcanonical ensemble. Since the 
nature of the replica symmetry breaking in many of the models with discrete weights is 
similar, we believe that our results can immedialely be extended to other cases such as 
learning a rule fmm examples, and utilizing discrete weights of larger synaptic depth. 

I. Introduction 

The replica formulation of the statistical mechanics of disordered systems has become 
a major research tool in the study of complex systems. In particular, the problem 
of learning in neural networks has been exhaustively studied within that framework 
since the seminal paper of Gardner (1988). The popularity of the replica method 
stems mainly from the elegance and simplicity of a particular formulation, the so- 
called replica-symmetric theory: research fields where this theory was shown to be 
appropriate have undergone rapid progress while fields requiring a more elaborate 
formulation, namely Parisi's replica symmetry breaking scheme (Parisi 1980, MBzard 
ef a1 1987), have been much slouTer to progress. 

In the context of learning in single-layer feedforward neural networks, the replica- 
symmetric theory was successfully employed in the analysis of networks of real-valued 
weights (Gy6rgi and Tishby 1989, Seung er a1 1992, Meu and Fontanari 1992a). In 
fact, in the problem of learning from examples this theory gives exact results, this 
being attributed to the connectedness of the weight space. On the other hand, the 
theory fails badly in describing discrete weights networks, in the region where the 
learned rule is unrealizable (Seung et a1 1992, Meu and Fontanari 1992b). 

With at least one remarkable exception, namely the seminal paper of Gardner, 
most applications of the replica method, either for real-valued or discrete weights 
neural networks, have been carried out within the canonical ensemble formalism. 
The goal of this paper is to show that the replica-symmetric theory can indeed 
adequately describe discrete weight networks, provided it is formulated within the 
microcanonical ensemble formalism. Although we focus in this paper on the random 
mapping problem (Gardner 1988), our results can immediately be extended to the 
case of learning a rule, where in any event the effects of replica symmetry breaking 
are usually much weaker. 
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1078 J F Fontanari and R Meir 

We consider a neural network consisting of N binary input units Si = fl 
connected to one output unit U through a set of N Ising weights Wi = f l .  The 
state of thc output unit is determined by the equation 

0 = g (A w .  s) 
N with the notation z . = Ci=, z i y i .  In this paper we consider two forms for the 

transfer function, g(z) = z and g ( z )  = sign(.). In the former case, the resulting 
neural network is termed h e a r  Ising perceptron while in the latter case, it is termed 
boolean Ising perceptron. 

Given P = aN input/output pairs (SI, t ' ) ,  where S' = (Si,. . . , S,!,,) is the Ith 
input and t' is the associated correct output, we wish to compute the minimal error, 
emin, which a perceptron makes in implementing the given input/output mapping. 
This quantity is related to the ground-state energy E,, of a spin system governed by 
the Hamiltonian or energy 

through emin = EGs/P.  Here, c = 2 (4) for the linear (boolean) Ising perceptron. 
In what follows we consider the case where each component S,! = f l  is chosen 
at random. For the boolean Ising perceptron t1 = kl is abo chosen at random, 
independently of S', while for the h e a r  king perceptron f l  is a real number drawn 
from a Gaussian distribution of zero mean and unit variance. Thus, the energy itself 
is a random variable. In the statistical mechanics approach, the weights represent 
the dynamical variables (spins) and the P input/output pairs play the role of the 
quenched impurities. 

The storage capacity of the network a, is defined as the ratio between the maximal 
number of input/output pairs for which emin = 0 and the number of input units N .  
It was shown (Gardner and Derrida 1988) that for the boolean king perce tron the 
replica-symmetric theory formulated in the canonical ensemble predicts a! = 4/x 
which violates the information-theoretic bound a," < 1. As we shall show, the 
situation is even worse in the case of the linear king perceptron, where that theory 
predicts a non-zero value for U:, while a rigorous bound asserts that a: = 0. In this 
paper we show that the microcanonical replica-symmetric theory predicts a, correctly 
for both models and gives estimates for emi, which are comparable with the estimates 
of the canonical one-step replica symmetry breaking theory. 

The remainder of the paper is organized as follows. In section 2 we present an 
extensive study of both the canonical and microcanonical versions of the statistical 
mechanics of the linear king perceptron, obtaining several estimates for emin. 
Section 3 is devoted to the analysis of the boolean Ising perceptron, with emphasis 
on the microcanonical formulation. Finally, in section 4 we summarize our results 
and present some concluding remarks. 

2. Linear Ising perceptron 

In this case (2) becomes 

1' E ( W , S , t ) =  I q J = W . S ' - f '  I P  1 . 
N I=1 

(3) 
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Since in the limit N - CO, the output U( has the same distribution as t i ,  the existence 
of a regime at low values of a where emin vanishes, thus implying a non-zero value for 
or:, cannot be discarded a priori. We note that this model has been recently studied 
in the context of learning a rule by Seung et a1 (1992). We focus, however, on the 
zero-temperature limit, showing that the canonical approach to this problem leads to 
disastrous results with respect to the entropy. 

In the following we present estimates for emin obtained Within the canonical and 
microcanonical formulations. We also derive a rigorous bound for this quantity, 
employing an annealed approximation to evaluate the averages over the quenched 
random variables. 

2.1. Canonical ensemble 

For a k e d  realization of the input/output mapping, the neural network is assumed to 
be in contact with a heat bath or any source of noise characterized by the parameter 
p, which plays the role of the inverse temperature, p = 1/T. The probability 
distribution on the space of networks with average energy E ( W ,  S,t) is then given 
by the Gibbs distribution 

(4) 

where the partition function Z is defined by 

z = 2, e-PE(W,S,t) 

and 'If, stands for the summation over the 2N possible weight configurations. Since 
it is believed that in the thermodynamic limit, N - CO, the self-averaging quantities 
are the extensive ones, we follow the standard convention (see Binder and Young 
1986 for a review) and evaluate the average free energy density 

where (( . . . )) represents an average over the distributions of Si and t i .  The replica 
method is a prescription for evaluating the average in (6): employing the identity 

1 
%-U n ((InZ)) = lim -In((Zn)) 

one first calculates (( Zn )) for integer n and then analytically continues to real n - 0. 
In this formulation, the ground-state properties are obtained in the limit p - 03. 

For instance, the minimal fraction of errors is given by 

1 a@f) Emin = lim -- 
@ - m a  ap 

and the ground-state entropy density is 

af s =  lim pz-. 
P-m a0 (9) 
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The evaluation of f in the limit N + CO is standard by now (Gardner and Derrida 
1988), so we present the final result only: 
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where 

with Ttwa = Cw.=*l. 
and Gab. The former order parameter has a simple physical interpretation, 

The free energy must be extremized with respect to the order parameters qab 

¶ob = N-' (((wa)T ' (wb)T)) (13) 
Le. it measures the average overlap between two equilibrium states, W, and Wb. 
Here, (. . .)T stands for a thermal average. To proceed further, next we consider two 
standard ansiitze for the structure of the order parameters. 

21.1. Replica-symmetric theoy. Since the replicas have no a p h r i  physical meaning, 
it is natural to assume that the order parameters are symmetric under pennutatiom 
of the replica indices, Le. 

With this ansatz the evaluation of (10) is straightforward, resulting in the free energy 
qab = q and inb = 4 Vu < b .  (14) 

(15) 
where the parameters Q and 6 are determined through the saddle-point equations 

Using (8)  and (9) and taking the limit p -, CO so that I 5 p(1- q )  is finite we 
afM/aq = afMjag = o and DZ = d r  exp(-zz/2)/Jz;;. 

find 

l n ( l + r ) - -  
I t "  " 1  

where 
1 

X =  &E-- 1' 
This solution, which possesses c z n  > 0, exists for a > l / v  only. Its entropy is 
negative, increasing from -CO to 0 as a increases from its lower limit to CO. 

For (Y < l /n,  there exists a solution with q < 1 for which ~2~ = 0 and sRs = -CO 

independently of a. Thus the replica-symmetric theory predicts a: = l/r. However, 
the pathologies in the entropy indicate that this theory is totally inadequate to describe 
the thermodynamic behaviour of the linear Ising perceptron. 
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2.1.2 Replica Symmehy breaking. Following Parisi's scheme (Parisi 1980, Mdzard et 
a1 1987), we perform the first stage of replica symmetry breaking by dividing the n 
replicas into n/m groups of m replicas and setting gab = ql,  Geb = cjl if a and b 
belong to the same group and qab = q,,, $ab = $,, othelwise. The physical meaning 
of the variables q,,, q1 and m is given by (Krauth and Mdzard 1989) 

m = 1 - CP;. 
a 

Physically, q,, is the overlap between a pair of different equilibrium states, ql 
represents the self-overlap of an equilibrium state with itself, and m is the probability 
of finding two copies of the system in two different stat- (Pa is just the Gibbs 
probability measure for the state a). Note that in the limit n + 0, the parameter m 
is constrained to the range 0 < m < 1. Thus the free energy, (lo), becomes 

To obtain sensible results, the limit p - M must be taken so as to keep the 
parameters z E p( 1 - q,) and D E pm finite. The motivation for making this ansatz 
is that it is the only one consistent with a non-zero ground-state energy (which is 
required by the analysis of the next section). We note that a similar assumption 
concerning the one-step solution was made by Crisanti et a1 (1986) when discussing 
replica symmetry breaking in the Hopfield (1982) model. We are left then with the 
task of m u h i z i n g  f$B with respect to z, D and q,,, since the remaining order 
parameters, and $,,, can easily be eliminated in their favour (Mkzard et a1 1987). 
Instead of solving the saddle-point equations, we have opted for directly maximizing 
f$& using a standard maximization routine, namely the simplex algorithm (Nelder 
and Mead 1965). Our main findings are as follows. We were unable to find any 
solution, besides the replica-symmetric one, for a < 0.21. However, for a larger 
than this value we found a solution with emin larger than the corresponding replica- 
symmetric values. Moreover, the entropy of this solution, though still negative for all 
a, is larger than the replica-symmetric one. These results show a tendency towards 
the exact solution, i.e. one with vanishing entropy, as the number of steps of replica 
symmetry breaking increases. We note however that although the region where the 
entropy is -co has shrunk from a E [ 0 , 1 / ~ ]  to a E [0,0.21], it has not vanished. We 
expect that as the number of steps of replica symmetry breaking increases this region 
shrinks to zero. We should also mention that we are not aware of any other model 
where the entropy displays this pathological behaviour for the replica-symmetric and 
one-step solutions. 
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2.2 Microcanonical ensemble 

The microcanonical formulation of the statistical mechanics is based on the 
computation of N( E), the number of networks with energy E. Once this basic 
quantity is known, the average entropy density is calculated by the Boltmann relation 
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from which we can obtain all the thermodynamic quantities. As before, the average 
indicated by (( . . . )) is taken over the probability distributions of S' and tl. Within 
this formulation, EGs, and consequently emin, can be obtained by calculating the 
lowest value of E for which s ( E )  is positive. Clearly, s ( E  < EGs) + -cc since 
the entropy of a discrete spin system cannot be negative. The connection with the 
canonical formulation is made through the thermodynamic relationship 

a ( N s ) / a E  = 0. (22) 
We can calculate N (  E) by introducing the quantity Yw which is 1 if E( W, S, t )  = E 
and zero otherwise, so that 

,V( E )  = Ttw I'w . (23) 

However, rather than N ( E ) ,  the evaluation of (21) through the replica method 
requires the calculation of the nth moment (( (N( E))" )). Noting that the energy, (3), 
is a random variable distributed according to the probability distribution 

W E ' )  = ( ( & ( E ' -  E(W,S, t ) ) ) )  (24 
the calculation of this moment becomes straightfonvard: 

=~wITr.w?...Tt,.P(EI=E,E;=E ,..., E;= E )  (2.5) 
where P (  E; = E ,  E; = E , .  . . , E:, = E) is the joint probability that networb 
W1, Wz,. . . , W" have energy E. Thus 

Using the integral representation of the delta function we 6nd 

where the second term inside the average symbol is nothing but the canonical partition 
function replicated n times with p replaced by 2,, and E = E / u N .  Keeping this 
correspondence in mind, it is straightforward to obtain, in the thermodynamic limit, 
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where Go is given by (ll), and G; is given by (12) with p replaced by ta. Here, the 
extremum is taken with respect to ta ,  qab and 

Before taking the limit n + 0, it is interesting to consider the case n = 1, the 
so-called annealed approximation, where s is approximated by sA, 

Due to the convexity of the logarithm function we have the very useful inequality 

'A(€) 2 S(E) (30) 

which implies that s( E) - --oo for any e such that sA( E )  < 0. This is the reason why 
the value of E at which sA vanishes, E$,,, is a rigorous lower bound to emh. 

In the following we discuss the annealed approximation and the replica-symmetric 
ansatz for the order parameters which appear in (28). 

22.1. Annealed approximation. The main appeal of this approximation is that it is 
free of all mathematical subtleties, while providing a rigorous lower bound to emin. 
Setting n = 1 in (28) and dropping the replica indices we find 

(31) 
a 

sA(e) = In2+ -(1- e f l n e )  2 

where we have used the saddle-point equation asA/Bt  = 0 to eliminate t. Since 
sA - -CO when e + 0 we conclude that a: = 0, i.e. there is no set of weights W 
that can perfectly implement a N  random input/output associations. For small a we 
find 

It is interesting to note that for a random weight configuration (sA = ln2) we 
find E = 1. For values larger than this, the system enters a regime where asA/& 
is negative (p < 0). Although a physical interpretation can be given to this regime 
(Landau and Lifshitz 1980) we do not consider this region any further, as it is not 
relevant to the calculation of ground-state properties. This observation is valid also 
within the replica framework, discussed next. 

2.22. Replica-symmetric theory. 'l&king the limit n -t 0 in (28) with the ansatz 

q a b  = 9 Gab = $ Va < b and = 2Va . (33) 

yields 

sm(e) = a c t -  -(1- q ) B t  / D z  In2cosh(r&) 1 
2 
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where the parameters q, 4 and t are determined through the saddle-point equations 

J F Fontanan and R Mew 

q = /Dttanh’(t&) 

2 +  t (1 -  q ) 2  

2 (1 + i( 1 - q ) ) Z  . e =  

The thermodynamic relationship a ( N s ) / B E  = as/a(ae) = p gives t = p, as 
expected. It can be easily seen that sRs -+ -CO when e + 0 in agreement with the 
annealed approximation. Moreover, for e = 1 we find q = #j = t = 0 and sRs = 1nZ. 
The values of E at which sRs vanishes give the replica-symmetric estimate for emin. 
For small a we find 

Since sRs is negative and $nile for E < esm, the replica-symmetric theory is clearly 
wrong in this region. Nevertheless, its estimate for emin may be exact, provided 
the replica-symmetric saddle-point is locally stable and eym is equal to the minimal 
error predicted by the full replica symmetry breaking theory. Following standard 
calculations (Gardner and Derrida 1988) we find that the replica-symmetric saddle- 
point is locally stable wherever the de Almeida-Thouless condition (de Almeida and 
Thouless 1978) 

a7071 < 1 (39) 

is satisfied. Here 

As far as the computation of emia is concerned, the inequality (39) is fulfilled for 
a < 0.616. 

We emphasize that the theory developed in this section gives no information on 
the nature of the ground state, which has to do with the order parameter function 
P(q)  (Mkzard et a1 1987) and therefore can only be elucidated through a full replica 
symmetry breaking analysis. 

23. Analysh of the results 

In the previous analysis we have obtained several estimates for cmin(a), which 
are summarized in figure 1. The full curve represents both the microcanonical 
replica-symmetric and the canonical one-step replica symmetry breaking (a > 0.21) 
predictions. The results are indistinguishable within our numerical precision. The 
long broken curve is the canonical replica-symmetric prediction which, for a > l / r ,  
gives a surprisingly good approximation to the more reliable results presented by the 
full curve. Finally, the short broken curve gives the rigorous lower bound obtained 
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Figure 1. Estimates of emin for the linear king per- Fmrr 2. Phase diagram of the linear king 
ccpmn as predicted by the micmcanonical replica. perceptron in the plane (or,T) acmrding to 
symmetric and the canonical one-step replica- the canonical and micmcanonical replicasymmetric 
symmetly-broken theories (full curve), the canonical theories. me full C U N e  is the zero-entropy line and 
replica-symmetric theory (long broken curve) and the broken curve is the Almeida-Thouless l ine 
lhe rigorous lower bound (short broken CUNC). 

within the annealed approximation. As expected, all these curves tend to 1 as a 
increases. 

In figure 2 we present the phase diagram in the plane (a, T) obtained within 
the microcanonical replica-symmetric theory using the thermodynamic relationship 
given in (22). Obviously, the same phase diagram could be obtained using the 
canonical replica-symmetric theory directly. The full curve represents the zero entropy 
line, below which the replica-symmetric enuopy is negative. The replica-symmetric 
saddle-point is locally stable above the broken curve (Almeida-Thouless line). These 
c w e s  intersect the horizontal axis only at a = 0. They intersect at a = 0.616 and 
T = 0.081. For a > 0.616 the replica-symmey-broken solution appears as a result 
of the instability of the replica-symmetric solution, as in the Sherrington-Kirkpatrick 
(Sherrington and Kirkpatrick 1975) model. On the other hand, for a < 0.616 one 
expects a first-order phase transition, in the sense of the existence of a discontinuity 
in the structure of the order parameter qeb, though the free energy is, of course, 
continuous at the transition. We note that a similar phase diagram was obtained 
by Dotsenko and Tirozzi (1991) in their analysis of a feedback neural network with 
modified pseudo-inverse interactions. It would be interesting to know whether the 
onset of the replica symmetry breaking for a < 0.616 occurs above the zero-entropy 
h e ,  as in the model studied by Dotsenko and Tirozzi, or exactly at the zero-entropy 
line, as in the simplest spin glass (Gross and Mtzard 1984) and the boolean Ising 
perceptron (Krauth and Mtzard 1989). However, we do not pursue this issue any 
further, as it involves a rather complex numerical analysis in order to find the maxima 
of fa for finite p, without being directly related to the computation of emin. 

3. Boolean Ising perceptron 

For this problem we consider the output neuron's response to be given by taking g in 
(1) to be the sign function. The error is then given by the number of misclassilications 
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P 
E ( W ,  s, t )  = CO (- t 'W.  s') 

1=1 

where the Heaviside function O(z) is 1 for z > 0 and zero otherwise. 

3.1. Canonical ensemble 

The problem of the boolean king perceptron has been considered within the canonical 
ensemble by Gardner and Derrida (1988) who obtained the replica-symmetric result, 
indicating that the correct solution requires breaking the replica symmetry. More 
recently, Krauth and MBzard (1989) showed how to obtain the correct solution with 
one level of replica symmetry breaking. In particular, it was shown that the order 
parameter function P(q)  is given by a sum of hvo delta functions, 

where T, is the temperature at which the replica-synmetric entropy vanishes, qo is 
the replica-symmetric overlap at T, and q, = 1. Since the self-overlap q, attains its 
maximal value for T < T,, the system is completely frozen in the low-temperature 
phase, being then described solely by the replica-symmetric order parameter qu. This 
frozen phase is similar to the one found in the random energy model (Derrida 
1981), though the energy levels of the boolean Ising perceptron are not independent 
random variables. Krauth and MCzard also found that the critical capacity for error- 
free learning is given by a: = 0.83, above which the ground-state energy is non-zero. 
Derrida et a1 (1991) have also studied this problem using toy models to obtain upper 
and lower bounds without recourse to the replica approach. They also pointed out 
the strong finite-size effects in these models. 

3.2 Microcanonical ensemble 

In this section we follow the basic ideas presented in section 2 for the linear 
perceptron. As we shall see, the minimal fraction of errors emin obtained by Krauth 
and MBzard (1989) using replica symtneq breaking can be easily obtained within 
the microcanonical ensemble, using the replica-symmetric assumption. Without going 
into the details of the calculation, which are very similar to those given by Krauth and 
Mbzard (1989), we find the following results. The annealed and replica-symmetric 
entropies are given respectively by 

sA(c) = (1 - a ) I n 2 -  a [ e l n e  + (1 - E)In(l- E)] (43) 

and 

6 R S ( E )  = 016: - $( 1 - q)4 t / D z  In2cosh( z&) 

+ a / D t l n  [e-' + (1 - e-')H(u)] 

where U = td-, H ( u )  = s,"Dz and the variables q,4 and 8 are 
determined through the saddle-point equations. It is very easy to see that the 
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annealed results predict that for a > 1 the minimal error is non-zero. Thus, the 
annealed calculation predicts a! = 1, similarly to the annealed calculation based 
on the canonical approach (Krauth and Mdzard 1989). The condition for the local 
stability of the replica-symmetric saddle-point is again given by (39), with yo as in 
(43) and y1 given by 

where 

We have verified that the replica-symmetric saddle-point is IocaUy stable for all Q in 
the region E ~2~. 
3.3. AnaIysis of the results 

In contrast with the linear model where emin vanishes only at a = 0, the boolean 
model possesses exponentially many ground states with zero error for cy < 0.83. 
Beyond this value, the situation seems similar to that occuring in the linear model 
for a > 0, although, as the replica symmetry breaking analysis of Krauth and MBzard 
(1989) and the one presented in section 2 indicate, the nature of the low-temperature 
phase is very different. 

In figure 3 we show the minimal error obtained from the microcanonical replica- 
symmetric approach (full curve) as well as the replica-symmetric results (long broken 
curve) given by Gardner and Derrida (1988). The short broken curve is the rigorous 
lower bound obtained using the annealed approximation. Moreover, the values of 
cmin(cy) predicted by the one-step solution of Krauth and MCzard are identical to 
the ones we obtain within the replica-symmetric microcanonical ensemble. Since the 
latter results are locally stable (in the sense of (39)), they lend further support to the 
belief of the above authors that their results are in fact exact. 

The phase diagram in the ( a , T )  plane obtained within the replica-symmetric 
theory is shown in figure 4. Below the full curve, Tc(a),  the system is frozen in 
its ground state while below the broken curve (Almeida-Thouless line) the replica- 
symmetric saddle-point is unstable. As mentioned above, the frozen phase is described 
by the microcanonical replica-symmetric order parameter qu = qmin which measures 
the overlap between two distinct states with errors equal to emin. In this sense, 
we argue that the microcanonical replica-symmetric theory can correctly describe 
disordered systems akin to the random energy model or the boolean king perceptron. 
However, since at the present stage of knowledge it is not possible to determine a 
priori the structure of the low-temperature phase of an arbitrary spin glass-like system, 
the replica symmetly breaking scheme (Parisi 1980) remains the only recourse to the 
understanding of such systems. Nevertheless, figure 3 attests the success of the 
microcanonical replica-symmetric theory in predicting correctly the storage capacity 
and the dependence of the minimal fraction of errors on Q for the boolean Ising 
perceptron. 
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4. Discussion 

We have presented an analysis of the king percepuon both in the usual canonical, 
as well as in the microcanonical ensembles. We have shown that for these types of 
problems, the computation of the minimal fraction of errors emin and the storage 
capacity a, are greatly facilitated by using the microcanonical ensemble. Moreover, 
the annealed approximation carried out within ths ensemble provides a rigorous 
lower bound to emin and, consequently, an upper bound to a,. We recall that in the 
context of the random energy model, Derrida (1981) has in fact shown that while the 
microcanonical calculation gives correct results, the calculation within the canonical 
ensemble gives wrong results. 

We have focused mainly on the analysis of the linear Ising perceptron, showing 
that a: = 0 and presenting several estimates for emin. Although this system is rather 
uninteresting from the point of view of learning in neural networks, it can be thought 
of as a simple version of the integer programming problem (Garey and Johnson 1979): 
given a set of P pairs (SI,&‘), is there an N-tuple W for which W .  S’ = b’ for 
I = 1,. . . , P? Here, b’ is an integer drawn from a binomial distribution which, in the 
limit of large N, tends to a Gaussian distribution of zero mean and variance N .  We 
have shown that for a typical realization of the P = aN pairs (S ’ ,  b‘) the answer to 
this question is ‘no’, provided a is non-zero. In fact, the microcanonical formulation 
seems to be the natural approach to study optimization problems where, usually, the 
goal is to estimate the average cost (or energy) of the optimal solutions. Moreover, 
the h e a r  king percepmn seems to possess a very rich phase diagram (figure 2), 
since the crossing of the Almeida-Thouless and the zero-entropy lines indicates the 
existence of two competing replica-symmetry-broken solutions. The elucidation of 
this phase diagram promises to be a ditfcult task, as attested by the failure of the 
canonical approach to describe the low a, zero-temperature regime of this model. 

Concerning the boolean king perceptron, our estimate of emin lends credence 
to the claim of Krauth and MBzard (1989) that the one-step solution in the 
canonical ensemble in fact yields the exact result. Actually, we have shown that the 
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microcanonical replica-symmetric theory can correctly describe the thermodynamics 
of spin-glass-like systems that posses a frozen phase akin to the one present in the 
random energy model (Derrida 1981). This result may be very useful, since it has 
been shown recently that the problem of learning unrealizable rules, i.e. rules which 
cannot be perfectly implemented in a given architecture, leads to behaviour pattem 
similar to thase discussed in the context of the random mapping (Seung et a1 1992, 
Meir and Fontanari 1992b). Thus, we believe it is possible to obtain the full learning 
curve8 for these problems within the microcanonical replica-symmetric ensemble. It 
would also be interesting to investigate whether the approach described above leads 
to more tractable computations in the context of multi-layered networks of binary 
connections (Barkai and Kanter 1991). 
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